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Abstract. This paper is the continuation of the analysis of bound quantum systems started in part I
(A.L. Kholmetskii, T. Yarman and O.V. Missevitch, Going from classical to quantum description of bound

charged particles. I: Basic concepts and assertions), which is based on a novel approach to the transition
from classical to quantum description of electrically bound charges, involving the requirement of energy-
momentum conservation for the bound electromagnetic (EM) field, when the EM radiation is forbidden.
It has been shown that the modified expression for the energy levels of hydrogenic atoms within such a
pure bound field theory (PBFT) provides the same gross and fine structure of energy levels, like in the
standard theory. At the same time, at the scale of hyperfine interactions, our approach, in general, does
evoke some important corrections to the energy levels. Part of such corrections, like the spin-spin splitting
in the hydrogen atom, is less than the present theoretical/experimental uncertainties in the evaluation of
hyperfine contributions into the atomic levels. But the most interesting result is the appearance of a num-
ber of significant corrections (the 1S-2S interval and 1S spin-spin interval in positronium, 1S and 2S-2P

Lamb shift in light hydrogenic atoms), which improve considerably the convergence between theoretical
predictions and experimental results. In particular, the corrected 1S-2S interval and 1S spin-spin splitting
in positronium practically eliminate the existing up-to-date discrepancy between theoretical and experi-
mental data. The re-estimated classic 2S-2P Lamb shift as well as ground-state Lamb shift in the hydrogen
atom lead to the proton charge radius rp = 0.841(6) fm (from 2S-2P Lamb shift), and rp = 0.846(22) fm
(from 1S Lamb shift), which perfectly agrees with the latest estimation of proton size via the measurement
of 2S-2P Lamb shift in muonic hydrogen, i.e. rp = 0.84184(67) fm. Finally, we consider the decay of bound
muons in meso-atoms and achieve a quantitative agreement between experimental data and the results
obtained through our approach.

1 Introduction

In part I [1] we analyzed the problem of transition from classical to quantum description of electrically bound particles,
taking into account a substantial transformation of the structure of their EM field, when the particles are described
either in the classical, or in the quantum way. The latter is related to the well-known fact that the wave-like bound
particles in the stationary energy states do not emit EM radiation, whereas the classical charges undergoing an orbital
motion must radiate. Hence, in order to provide a consistent transition from classical to quantum description of such
systems, we explored the pure bound field classical electrodynamics (CED), where a motion of charges is described
in a classical way, but their EM radiation is prohibited. Based on the energy-momentum conservation law for such
charges, we have derived the Hamilton functions for the one- and two-body problems, which were considered as a
prototype for the construction of corresponding Hamilton operators, being applied to the one-body and two-body
problems in the atomic physics. Further on we have shown that the modified Dirac-Coulomb (DC) equation for
quantum one-body problem and the modified Breit equation for the two-body problem yield the same gross as well
as fine structure of the energy levels for hydrogenic atoms, like in the conventional approach. In addition, we have
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demonstrated that the PBFT correction to spin-spin interval in the hydrogen and heavier atoms is much less than the
present calculation uncertainty. At the same time, at the range of hyperfine contributions our approach, in general,
evokes some important corrections to the energy levels, which are discussed in the present paper. We show that the
corrections of the PBFT to the fine structure (having the order of magnitude of hyperfine interactions) are significant
only for 1S-states of hydrogenic atoms (subsect. 2.1). The correction brought by the PBFT to the hyperfine spin-spin
interaction occurs significantly for positronium, and allows eliminating the available disagreement between calculated
and experimental data (subsect. 2.2). In subsect. 2.3 we analyze the PBFT corrections to the Lamb shift in light
hydrogenlike atoms. In sect. 3 we show that the corrections brought by the PBFT to the common results practically
eliminate the available up-to-date discrepancy between theory and experiment for the 1S-2S interval and spin-spin
splitting in positronium, classic Lamb shift and ground state Lamb shift in hydrogen. In particular, we derive the
proton charge radius rp = 0.841(6) fm (from 2S-2P Lamb shift) and rp = 0.846(22) fm (from 1S Lamb shift), which
perfectly agrees with the latest experimental result [2]. In sect. 4 we discuss the physical meaning of the scaling
transformation r = r′/bmnbMnγmnγMn, which has been applied to the solution of modified Breit equation without
external field in [1]. In particular, we show that this scaling transformation can imply the change of proper time rate
of bound particles as the function of their binding energy. Applying this result to the re-calculation of the bound
muon decay rate versus the atomic number Z, we reached much better correspondence of the corrected results to the
available experimental data for muonic atoms in comparison with the standard predictions. Finally, sect. 5 contains a
conclusion.

2 Hyperfine contributions to the energy levels for light hydrogenlike atoms

In the last decades an appreciable progress has been achieved in physics of light hydrogenlike atoms, both in theory
and experiment. The measuring precision of the energy structure and uncertainty in its calculation now approaches in
some cases 10−13 [3–5]. Theoretical progress in QED calculations of energy levels in hydrogenlike atoms at the range
of hyperfine interactions is hampered by the uncertainties of nuclear structure contribution, and the available precise
experimental data allow to reverse the problem and to estimate nuclear characteristics by comparing theoretical and
experimental results. In such a way, measuring the Lamb shift, one can extract the value of proton charge radius;
the comparison of calculated and measured deuteron-hydrogen isotope shift yields the estimation of deuteron matter
radius, etc.

There is a quite satisfactory agreement between theoretical predictions and experimental data regarding the light
hydrogenic atoms, as well as in their comparison with the results in elementary particle physics. At the same time,
there remain some deviations between theory and experiment, which cannot be attributed to any uncertainty factors.
In particular, in the determination of the energy levels in light hydrogenic atoms, there are few clear discrepancies
between theory and experiment, where the value of the deviation (∆) substantially exceeds a corresponding uncertainty
σ (both theoretical and experimental):

– 1S-2S interval in positronium (∆/σ = 3.0);
– 1S hyperfine interval in positronium (∆/σ ≈ 2.0) [5];
– proton charge radius rp derived from the classic 2S-2P Lamb shift and the ground-state Lamb shift in hydrogen

usually exceeding the value of rp obtained from particle physics (∆/σ varies from 2 to 5 according to different
estimations [3,6]);

– proton charge radius rp derived from the Lamb shift data on hydrogen differs from that of the latest experiment
with muonic hydrogen by more than 4% [2].

In what follows, we will consequently analyze the fine-structure corrections (subsect. 2.1), corrections to spin-spin
interaction (subsect. 2.2), and corrections to the Lamb shift in light hydrogenlike atoms (subsect. 2.3) within the
approach of the PBFT.

2.1 Correction to the fine structure

In this subsection we continue to analyze the modified Breit equation (55) derived in part I [1] and reproduced below
for convenience:
[

− h̄2∇2
r′bMn

2m
− h̄2∇2

r′bmn

2M
−Ze2

r′
+

1

bmnbMnγ2
mnγ2

Mn

(

− p4
b

8m3b3
mnc2

− p2
b

8M3b3
Mnc2

+Ub (pbm,pbM , r′)

)]

ψ(r′)=W ′ψ(r′),

(1)
where

r = r′/ (bmnbMnγmnγMn) , (2)

W ′ = W/
(

bmnbMnγ2
mnγ2

Mn

)

, (3)
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the operator Ub(pbm,pbM , r) is equal to

Ub (pbm,pbM , r) = −πZe2h̄2

2c2

(

1

b2
mnm2

+
1

b2
MnM2

)

δ(r) − Ze2

2bmnbMnmMr

(

pbm · pbM +
r · (r · pbm) pbM

r2

)

− Ze2h̄γmnγMn

4b2
mnm2c2r3

(r×pbm) · σm+
Ze2h̄γmnγMn

4b2
MnM2c2r3

(r × pbM ) · σM− Ze2h̄γmnγMn

2bmnbMnmMc2r3
((r × pbm) · σM−(r × pbM ) · σm)

+
Ze2h̄γmnγMn

4bmnbMnmMc2

[

σm · σM

r3
− 3

(σm · r) (σM · r)

r3
− 8π

3
σm · σMδ(r)

]

. (4)

and the PBFT factors bmn, bMn, γmn, γMn are determined to the accuracy (Zα)2 by eqs. (58a-d) of ref. [1]. Hereinafter
we follow the designations of ref. [1].

We remind that eq. (1) differs from the common Breit equation without external field written in the Schrödinger-like
form [6], by the replacements

m → bmnm, (5a)

M → bMnM, (5b)

U → γmnγMnU, (5c)

E → γmnγMnE, (5d)

B → γmnγMnB (5e)

(compare with eqs. (50a-c) of ref. [1]). As we have shown in [1], these replacements reflect the modification of the
structure of the bound EM field for the system of bound charged with the prohibited radiation, when the wave
equation (12) for the operator of vector potential is replaced by the Poisson-like equation (14) of ref. [1].

We further show that the corrections of the PBFT to the fine structure of light hydrogenlike atoms with m ≪ M
have the order of magnitude of (Zα)6(m/M) and higher, and due to their scaling as n−6 (or n−5), they should be
taken into account practically only for the ground states. In the case of positronium, the fine-structure corrections
occur significantly not only due to the equality m = M , but also due to the PBFT correction to the annihilation term.

First of all, we extract from the Hamiltonian of eq. (1) the terms of fine interactions with the order (Zα)4 properly
modified in the PBFT, omitting at this stage the contribution due to spin-spin interaction. Hence, via eqs. (1) and (4)
we obtain the operator of fine interaction in the form

(Vb(r))fine = (Vb(r))rel + (Vb(r))contact + (Vb(r))s-o, (6)

where

(Vb(r))rel =
1

bmnbMnγ2
mnγ2

Mn

(

− p4
b

8m3b3
mnc2

− p4
b

8M3b3
Mnc2

)

, (7)

is the relativistic term,

(Vb(r))contact = − 1

bmnbMnγ2
mnγ2

Mn

πZe2h̄2

2c2

(

1

m2b2
mn

+
1

M2b2
Mn

)

δ(r), (8)

is the term of contact interaction, and

(Vb(r))s-o = − Ze2h̄

bmnbMnγmnγMnc2r3

[

(r × pbm) · σm

2m2b2
mn

+
(r × pbM ) · σM

2M2b2
Mn

− ((r × pbm) · σM − (r × pbM ) · σm)

2bmnbMnmM

]

, (9)

is the term of spin-orbit interaction.
We point out that the operators (7)-(9) are presented in r-coordinates, whereas in the Hamiltonian (1) they should

be expressed through r′-coordinates. In the latter case, each of the terms (7)-(9) can be calculated with taking into
account eq. (2), as well as the equalities

p4
b(r

′) = b4
mnb4

Mnγ4
mnγ4

Mnp4
b(r), (10)

δ(r) = b3
mnb3

Mnγ3
mnγ3

Mnδ(r′). (11)

Introducing the replacements (10)-(11) into eqs. (7)-(9), and expressing the terms (8), (9) via the fine structure
constant, we obtain the operator of fine interactions in r′-coordinates as follows:

(Vb(r
′))fine = γ2

mnγ2
Mn

(

−p4
b(r

′)b3
Mn

8m3c2
− p4

b(r
′)b3

mn

8M3c2
+

π(Zα)b2
Mn

2m2c2
δ(r′)+

π(Zα)b2
mn

2M2c2
δ(r′)+

(Zα)b2
Mn

2m2r′3c2
(r′ × pbm(r′)) · σm

+
(Zα)b2

mn

2M2r′3c2
(r′ × pbM (r′)) · σM − (Zα)bmnbMn

2mMc2r3
((r × pbm) · σM − (r × pbM ) · σm)

)

. (12)



Page 4 of 16 The European Physical Journal Plus

Then we can rewrite eq. (1) in the form

[

− h̄2∇2
r′bMn

2m
− h̄2∇2

r′bmn

2M
− Ze2

r′
+ (Vb(r

′))fine

]

ψ(r′) =
W

bmnbMnγ2
mnγ2

Mn

ψ(r′). (13)

Now, our immediate goal is to determine the fine structure corrections of the PBFT in eq. (13), which may emerge
in the order (Zα)6. To solve this problem, we need to determine factors bmn, bMn, γmn, γMn to the order (Zα)4.

For this purpose, first of all, we find the classical coefficients bm, bM , and γm, γM to the accuracy c−4 based on
their definitions (51a-d) of ref. [1]. The modification of factors bm, bM issues from the two circumstances:

– the factors γm and γM in eqs. (51a-b) of ref. [1] are no longer adopted to be equal to the unity, but they have to
be determined to the accuracy (v/c)2;

– in the expression for the EM interaction energy (48) of ref. [1], the term of magnetic interaction energy is no
longer ignored. Taking into account that for the bound EM field B = (v ×E)/c, we obtain for the circular motion in
the classical two-body problem

Bm · BM = BmBM =
vmvM

c2
EmEM =

mM

(m + M)2
v2

R

c2
Em · EM .

Substituting this equality into eq. (48) of [1] and using the quantum-mechanical definition of U , we obtain

bmn =

(

1 +
γMnU

mc2

)

= 1 − (Zα)2

n2

(

1 +
(Zα)2

2n2

m2

(m + M)2

)(

1 +
mM

(m + M)2
(Zα)2

n2

)

M

(m + M)

≈ 1 − (Zα)2

n2

M

m + M
− (Zα)4

2n4

m2M

(m + M)3
− (Zα)4

n4

mM2

(m + M)3
, (14a)

to the accuracy (Zα)4, where we have used eqs. (51e-f) of [1], taking into account that vR
2 = (Zα)2

n2 c2, and putting
[

1 − (Zα)2

n2

m2

(m+M)2

]

−1/2

≈ 1 + (Zα)2

2n2

m2

(m+M)2 with the sufficient accuracy of calculations.

Similarly we determine the factor

bMn = 1 − (Zα)2

n2

m

m + M
− (Zα)4

2n4

M2m

(m + M)3
− (Zα)4

n4

Mm2

(m + M)3
. (14b)

We point out that expanding the classical coefficients bmn and bMn (eqs. (51a-b) of [1]) to the accuracy (v/c)4, we
assume that the involvement of non-Coulomb interactions does not affect their values. Indeed, at the semi-classical
level, as shown in ref. [7], such non-Coulomb interactions are exactly counteracted by corresponding change of the
Coulomb interaction energy due to the proper variation of the radius of electron’s orbit. Hence the resultant action
of Coulomb and non-Coulomb interactions is equivalent to the Coulomb interaction with the appropriately adjusted
electron’s orbit. This observation concurrently implies that the overall change of the energy of the semi-classical system
“electron plus nucleus”, for example, due to spin-orbit interaction exhibits as a proper change of kinetic energy of the
orbiting electron and nucleus by the energy of the non-Coulomb interaction [7]. Therefore, taking into account the fine
interactions does modify the factors γmnγMn in the orders (Zα)4 and higher. In order to find the related corrections,
it is convenient to use the relationships between the Lorentz factors and the particles momenta

γ2
mn =

1

1 − p2
b/m2c2

, γ2
Mn =

1

1 − p2
b/M

2c2
,

where pb is the value of the electron (nucleus) non-relativistic momentum, and to the order (Zα)2 the averaged value
of p2

b is defined by eq. (60) of ref. [1].

With the involvement of fine interactions, this expression is modified as p2 = 2mR

(

(W0n + Vfine) + Ze2

r

)

. Taking
into account eq. (60) of [1], we obtain

γ2
mn =

1

1 − (Zα)2

n2

M2

(m + M)2
− 2mR(Vb(r

′))fine

m2c2

, (14c)

γ2
Mn =

1

1 − (Zα)2

n2

m2

(m + M)2
− 2mR(Vb(r

′))fine

M2c2

. (14d)
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Having obtained the coefficients bmn and bMn (eqs. (14a-b)) and γmn, γMn (eqs. (14c-d)) we are now in the position
to calculate the fine-structure corrections of PBFT to the order (Zα)6 on the basis of eq. (13). In particular, we find
that

p2bMn

2m
+

p2bmn

2M
=

p2

2mR
− mRc2 (Zα)4

n4

Mm

(m + M)2
− (Vb(r

′))fine
(Zα)2

n2

2Mm

(m + M)2
. (15)

Further, we determine the product W
bmnbMnγ2

mnγ2

Mn
, which for the nS-state is equal to

W

bmnbMnγ2
mnγ2

Mn

= W − mRc2(Zα)4

n4

Mm

(m + M)2
+ V f

(Zα)2

n2
− mRc2(Zα)65mM

4n6(m + M)2
− mRc2(Zα)6m2M2

2n6(m + M)4
. (16)

Here we have used eqs. (14a-d), and in the terms of the order (Zα)4 we put W = W0n = −mRc2(Zα)2

2n2 , while in the

terms of the lower order (Zα)2 we presented W = W0n + V fine.

In order to find the PBFT corrections for the term (Vb(r
′))fine, we can write it in the form

(Vb(r
′))fine = (V (r′))fine + δVfine,

where (V (r′))fine represents the common operator of fine structure, and δVfine contains the specific corrections of the
PBFT determined by the substitution of factors bmn, bMn, γmn, γMn in eq. (12). Since the operator (V (r′))fine itself
has the order (Zα)4, it is enough to use the PBFT factors (14a-d) written to the accuracy (Zα)2. In particular, for
the nS-state of hydrogenlike atom, straightforward calculations yield

δVfine =
M2 + m2

(M + m)2
(Zα)2

n2
V f +

2mc2(Zα)6

n5(M + m)5
(mM4 − m2M3 + m3M2) − 9

8

mc2(Zα)6

n6

mM2(M2 + m2)

(M + m)5
. (17)

Substituting eqs. (14-17) into eq. (13), we obtain, after lengthy, but straightforward calculations for nS-states,

[

p2

2mR
− Ze2

r′
+ (V )f

]

ψ(r′) =

{

W − 2mc2(Zα)6

n5(M + m)5
(2mM4 + m2M3 + 2m3M2) +

mc2(Zα)6

n6

mM2

4(m + M)3

+
mRc2(Zα)6m2M2

2n6(m + M)4
+ mc2 (Zα)6

2n6

(M2 + m2)mM2

(m + M)5

+
9

8

mc2(Zα)6

n6

mM2(M2 + m2)

(M + m)5

}

ψ(r′). (18)

Designating the term in the bracket of the rhs of eq. (18) as Wcommon, we rewrite this equation in the short form

[

p2

2mR
− Ze2

r′
+ (V )f

]

ψ(r′) = Wcommonψ(r′),

which represents the common Breit equation without spin-spin term written in the Schrödinger-like form (see, e.g.,
[6]), expressed in r′-coordinates. Therefore, the PBFT correction to the atomic nS state energy levels is equal to

δWPBFT =W−Wcommon =
2mc2(Zα)6

n5(M+m)5
(2mM4+m2M3+2m3M2)−mc2(Zα)6m2M3

n6(m+M)5
− 15

8

mc2(Zα)6

n6

mM2(M2+m2)

(M+m)5
.

(19)
One can see that for atoms with m ≪ M , the correction (19) has the order of magnitude mc2(Zα)6m/M and

scales as n−6 or n−5. Therefore, there is no practical need to calculate this correction for n ≥ 2 and l �= 0.
In fact, the correction (19) is significant for 1S-state only, and for hydrogen it is equal to

δWH
fine(1S) =

9

8
mc2(Zα)6

m

M
= 10.8 kHz. (20a)

Note that this correction is positive, and it reduces the value of 1S-state (which is negative). For 2S-state of hydrogen
we obtain from eq. (19) δWH

fine(2S) = 0.6 kHz. Hence the correction to 1S-2S interval in hydrogen is equal to

δWH
fine(1S − 2S) = 10.2 kHz. (20b)

Below, the correction (20b) will be involved into the re-estimation of 1S Lamb shift in hydrogen.
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For 1S-state of muonium, this correction is about 0.1MHz, and is few times less than the theoretical uncertainty in
calculation of 1S-2S transition (≈ 0.30MHz [3]), and much less than the experimental uncertainty in the measurement
of this interval (9.8MHz [8]).

For 1S-state of positronium (m = M), the correction (19) becomes

δWPs
fine(1S) =

21mc2(Zα)6

128
= 3.07MHz,

and for the 1S-2S interval, as follows from eq. (19),

δWPs
fine(1S − 2S) = 2.95MHz, (20c)

which will be involved below into the re-estimation of 1S-2S interval in positronium.
Besides, for positronium the Breit potential includes the additional annihilation part (e.g., [6,9]), which in the

PBFT acquires the form

(Vb(r))ann =
1

b2
nγ4

n

(

π(Zα)

m2b2
nc2

(

7

6
(3 + σ+ · σ−) − 2

)

δ(r)

)

,

where σ+ (σ−) belongs to positron (electron), and we designated bmn = bMn = bn, γmn = γMn = γn. In r′-coordinates,
due to eq. (11), this operator acquires the form

(Vb(r
′))ann = b2

nγ2
n

(

π(Zα)

2m2c2
(3 + σ+ · σ−)δ(r′)

)

.

We average this term with the wave function for l = 0 [6]

ψ(0) =
1√
π

(

ZαmR

n2

)3/2

,

and taking into account that for positronium bn =
(

1 − (Zα)2

2n2

)

, γmn =
[

1 − (Zα)2

4n2

]

−1/2

with sufficient accuracy of

calculations (Zα)2 (see eqs. (14a-d) for m = M), we derive, in the orthopositronium case,

(Wb)ann =

(

mc2(Zα)4

3n3

(

1 − 3(Zα)2

4

))

.

Hence the correction of the PBFT to annihilation term reads

δWann =
mc2(Zα)6

4n5
. (21)

The correction (21) decreases the value of 1S-2S interval in positronium by 4.53MHz, and thus, it should be added
to the fine structure correction (20c). A comparison of the theory and experiment for 1S-2S interval in positronium
will be done below in subsect. 3.1.

2.2 Corrections to hyperfine spin-spin splitting of energy levels in leptonic atoms

In sect. 5 of ref. [1] we obtained the following expression for calculation of spin-spin interval within the PBFT:

(Wb)s-s =

(

1 − (Zα)2

n2

2mM

(M + m)2

)

Ws-s, (22)

where Ws-s is the spin-spin splitting calculated in the common approach, so that the term

δ(Wb)s-s = − (Zα)2

n2

2mM

(M + m)2
Ws-s, (23)

represents the correction of the PBFT. We mentioned that for the hydrogen atoms δ(Wb)s-s < 100Hz and can
be ignored at the present accuracy of calculation of spin-spin interval. However, for the leptonic atoms (positronium,
muonium), where the nuclear structure effects do not appear, the value (23) exceeds both theoretical and experimental
uncertainty, and further analysis of eqs. (22)-(23) is required.
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Now it is important to remind that the energy Ws-s contains the ratios of magnetic moment to mass both for the
electron and the nucleus, which are determined experimentally by means of the Zeeman effect. Since in the PBFT
the operator of interaction of magnetic dipole with an external magnetic field is, in general, modified, the appropriate
corrections to the measured values “magnetic moment/mass” ratio should be clarified, too.

As known, the operator of interaction of two bound particles (electron and nucleus) with the external magnetic
field reads [5]

Vmag = gm
eh̄

2m
(sm · B) − gM

Zeh̄

2M
(sM · B), (24)

where gm, gM are the g-factors for bound electron and nucleus, correspondingly. Being added to the Breit operator (1),
along with the PBFT corrections (5a-e), this operator acquires the form

(Vb)mag =
1

bmnbMnγ2
mnγ2

Mn

[

gm
eh̄

2mbmn
γmnγMn(sm · B) − gM

Zeh̄

2MbMn
γmnγMn(sM · B)

]

.

Averaging this operator with the Schrödinger wave function ψ(r), due to the normalization requirement

ψ(r) = (bmnbMnγmnγMn)3/2ψ(r′), (25)

implied by the transformation (2), we obtain

(V b)mag ≡ (Wb)mag = bmnbMnγ2
mnγ2

Mn

[

gm
eh̄bMn

2m
(sm · B) − gM

Zeh̄bmn

2M
(sM · B)

]

, (26)

where (Wb)mag gives the Zeeman splitting of energy levels in the PBFT framework. Herein in the averaging of (V b)mag

we put B(r) = const, which is always fulfilled in the atomic scale.
Inserting eqs. (14a-d) into eq. (26), we obtain for nS-state

(Wb)mag ≈
(

1 − (Zα)2

n2

2Mm

(m + M)2

) [

Wmag −
(Zα)2

n2

eh̄

2m
((gmsm − ZgMsM ) · B)

m

M + m

]

, (27)

(with sufficient accuracy (Zα)2), where Wmag stands for the Zeeman splitting of energy levels, obtained via the
averaging of common operator (24). For the sublevel F = 1 used for the measurement of Zeeman effect, sm − sM = 0,
and eq. (27) read

(Wb)mag ≈
(

1 − (Zα)2

n2

2mMZ

(m + MZ)2

) (

Wmag −
(Zα)2

n2

(gm − ZgM )eh̄

2m
(sm · B)

1

M + m

)

, (28)

where we supply the mass M by the subscript “Z” (“Zeeman effect”), in order to distinguish it from the mass M in
eqs. (22)-(23), which designates the mass of the nucleus in the measurement of spin-spin splitting. Thus, the magnetic
moment to mass ratio of derived from the Zeeman splitting should be corrected in the PBFT for each bound particle
with taking into account of the relationship (28) between (Wb)mag and Wmag.

For the 1S-state of hydrogen and heavier atoms, the analysis of this correction in the estimation of spin-spin
interval is not practically important, because we have found in ref. [1] that term (Zα)2 2mM

(M+m)2 Ws-s of eq. (23) itself

is less than 100Hz (at Z = 1) and is many times smaller than the nuclear-structure contribution to the 1S hyperfine
splitting

Considering the spin-spin splitting of 1S-state of muonium, we can also ignore the correction to the ratio “magnetic
moment/mass” for the electron, because one can show that it induces the PBFT correction of the order 100Hz, which is
much smaller than the present theoretical uncertainly in calculation of spin-spin interval in muonium (about 500Hz [5]).
Further, for muonium we can put with a high accuracy gm = gM in the term containing (Zα)2. We also use the known
fact that the magnetic moment to mass ratio for bound muon is determined with the best accuracy via the Zeeman
effect in muonium [5], so MZ = M , and Z = 1 With these equalities eq. (28) yields

(Wb)
Mu
mag =

(

1 − (Zα)2

n2

2mM

(m + M)2

)

WMu
mag,

which shows that the PBFT correction to spin-spin interval (23) has exactly the same structure as the PBFT correction
to the “magnetic moment/mass” ratio for bound muon. As a result, both corrections exactly compensate each other,
and we get

(Wb)
Mu
s-s =

(

1 − (Zα)2

n2

2mM

(M + m)2

)

(

1 − (Zα)2

n2

2mMZ

(m + MZ)2

)WMu
s-s = WMu

s-s . (29)
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For positronium we have quite different situation (M = m, but MZ ≈ 103m, if the magnetic moment to mass
ratio for electron is taken from the Zeeman splitting in hydrogen or heavier atoms), and the correction to spin-spin
interaction (23) dominates over the correction to the “magnetic moment/mass” ratio for bound electron. Hence we
use the correction of eq. (23) solely, which yields

(Wb)
Ps
s-s =

(

1 − (Zα)2

2n2

)

WPs
s-s. (30)

This equation will be applied in subsect. 3.2 for the PBFT correction of spin-spin interval for 1S-state of positronium
and for comparison with modern experimental data.

2.3 Corrections to the Lamb shift

The corrections of the PBFT obtained above in subsects. 2.1 and 2.2 originate from the appropriate modification of
the Breit equation suggested in ref. [1]. Analyzing now radiative corrections to the atomic energy levels, we consider
the PBFT as complementary to QED, so that any modifications in the core structure of QED are not implied. Thus
only the modifications of the PBFT in the input of QED expressions (5a-e) should be accounted for, along with the
relationship (25) for non-relativistic wave functions. On the basis of these results we derive below the corrections to
the Lamb shift L for light hydrogenlike atoms, which emerge in the PBFT. With sufficient accuracy of calculations,
we further adopt the limit M → ∞ (one-body problem).

It is known that the dominant terms of the Lamb shift arise due to a finite radius of the electron 〈r2〉, which
continuously emits and absorbs virtual photons, as well as to vacuum polarization.

The finite radius of the electron induces a deviation from the Coulomb potential [3]

δVfinite radius =
1

6
〈r2〉∆U ≈ α

3π
ln(Zα)−2 ∆U

m2
=

4

3
ln(Zα)−2 Zα2

m2
δ(r), (31)

where ∆ is the Laplacian. According to eqs. (5a), (5c) for the bound electron the mass m is replaced by bmnm, while
the Coulomb potential U is replaced by U ′ = γmnγMnU ≈ γmnU , where we can put γMn = 1 with sufficient accuracy
of calculations; further we also put bMn = 1 in the correction to the Lamb shift. Thus the latter equation acquires the
form

δV ′

finite radius =
4γn

3b2
n

ln(Zα)−2 Zα2

m2
δ(r) =

γmn

b2
mn

δVfinite radius, (32a)

where δVfinite radius is defined by eq. (31).
The contribution due to vacuum polarization [3] is also proportional to ∆U/m2, and thus the latter equation

remains in force for this correction:
δV ′

polarization =
γmn

b2
mn

δVpolarization. (32b)

The total contribution δVtotal is defined as the sum δVtotal = δVfinite radius + δVpolarization, so that for the total pertur-
bation we get

δV ′

total =
γmn

b2
mn

δVtotal. (32c)

The correction to the energy level is given by the matrix element of the total perturbation (32c), where we need to
take into account eq. (25), putting bMn, γMn = 1. Hence

∆WPBFT = 〈nS|δV ′

total|nS〉 = b3
mnγ3

mn

(

γmn

b2
mn

∆E

)

= bmnγ4
mn∆W = γ2

mn∆W,

where ∆E denotes the value of energy shift, obtained within QED, and we have used the equality bmnγ2
mn = 1,

followed from eq. (14a) and (14c) at M → ∞.
Thus the Lamb shift at the given energy level corrected within the PBFT, reads

(Lnlj)PBFT = γmn
2Lnlj , (33)

where Lnlj stands for the Lamb shift calculated in QED.
For the 2S-2P Lamb shift both levels have a principal quantum number n = 2, and we get

(Lb)2S-2P = γ2
m2L2S-2P = L2S-2P (1 − (Zα)2/4)−1. (33a)
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Thus the correction induced by the PBFT to the 2S-2P Lamb shift is equal to

δL2S-2P = (Lb)2S-2P − L2S-2P = L2S-2P

[

(1 − (Zα)2/4)−1 − 1
]

. (33b)

Numerically this value is equal to 13.8 kHz for hydrogen, which exceeds substantially the measured precision for
Doppler-free two-photon laser spectroscopy [4].

Below we compare the experimental and theoretical values for the corrected 2S-2P Lamb shift in hydrogen (sub-
sect. 3.3) and 2S-2P Lamb shift in He+ (subsect. 3.4).

Equation (33) is, in general, also applicable to the 1S Lamb shift L1S in hydrogenlike atoms. However, its direct
measurement is impractical until the effects of nuclear structure are known accurately enough. In order to eliminate
the influence of these effects, the data at least of two measurements are involved: for hyperfine intervals in the ground
state and metastable states (for example, for the 1S- and 2S-states). Since the bulk contribution to the Lamb shift
scales like n−3, then the difference 8(Whpf)2S −(Whpf)1S allows us canceling substantially various contributions caused
by the short distance effects. However, the factors γmn differ from each other for 2S- and 1S-states, and calculation
of the corrected 1S Lamb shift (Lb)1S is not straightforward.

In order to introduce the PBFT corrections to the 1S Lamb shift, to be convenient for practical applications, one
needs to look closer at the typical methods for its theoretical estimation. In principle, the 1S Lamb shift could be
extracted from the experimental data on the transition frequencies between the energy levels with different numbers
n. One should emphasize that the intervals of gross structure are mainly determined by the Rydberg constant R. In
order to disentangle measurement of the 1S Lamb shift from the measurement of the Rydberg constant, one can use
the experimental data on two different intervals 1S-2S and 2S1/2-8D5/2 of hydrogen [10]. Theoretically these intervals
can be presented as [3]

E1S−2S =
(

WDR
2S1/2

− WDR
1S1/2

)

+ L2S1/2
− L1S1/2

, (34a)

E2S−8D =
(

WDR
8D1/2

− WDR
1S1/2

)

+ L8D5/2
− L2S1/2

, (34b)

where WDR
nlj

is the leading Dirac and recoil contribution to the position of the respective energy level (eq. (63) of

ref. [1]).
The differences of the leading Dirac and recoil contribution on the rhs of eqs. (34a-b) are proportional to the

Rydberg constant R plus corrections of order α2R and higher. One can construct a linear combination of these
intervals which is proportional to α2R plus higher-order terms:

E1S−2S − 16

5
E2S−8D =

(

WDR
2S − WDR

1S

)

− 16

5

(

WDR
8D − WDR

2S

)

− L1S +
21

5
L2S − 16

5
L8D. (35)

Then the difference of the leading Dirac recoil contribution on the rhs of eq. (35) can be calculated with a high
accuracy, due to the suppression factor α2, and it practically does not depend on the exact value of R. Hence the
linear combination of the Lamb shifts on the rhs of eq. (35) does not depend on R, either. The bulk contribution to
the Lamb shift scales as 1/n3 which allows using the theoretical value L8D5/2

= 71.51 kHz [3] without loss of accuracy.
The 2S Lamb shift can be extracted from the data on the classic 2S-2P Lamb shift, so that

L1S =

[

(

WDR
2S − WDR

1S

)

− 16

5

(

WDR
8D − WDR

2S

)

− 16

5
L8D

]

−
[

E1S−2S − 16

5
E2S−8D

]

+
21

5
L2S . (36)

Here on the rhs, the first term in square brackets is computed theoretically, the second term in square brackets is
determined experimentally, while the last term is extracted from the data on the classic 2S-2P Lamb shift. Within the
PBFT, the first computed term on the rhs of eq. (36) should be corrected by adding the fine structure correction (20b).
Besides, one has to correct within the PBFT the 2S Lamb shift, using the data on the classic 2S-2P Lamb shift. Hence
the expression for the 1S Lamb shift for the hydrogen within the PBFT acquires the form

(Lb)1S [kHz] = L1S [kHz] + 10.2 +
21

5
δL2S [kHz]; (37)

the PBFT correction to 2S Lamb shift δL2S will be found below in subsect. 3.5, where the value (37) will be calculated.

3 Corrections of the PBFT to the atomic energy levels and comparison with experiment

In this section we analyze the hyperfine contributions into the energy levels of light hydrogenic atoms, where the
discrepancy between theory and experiment exceeds the uncertainties in their determination, and apply the appropriate
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corrections of the PBFT derived above. We show that the corrections of the PBFT provide a perfect conformity
between theoretical and experimental values for all parameters listed in the introduction: 1S-2S interval in positronium
(subsect. 3.1); spin-spin splitting in positronium (subsect. 3.2), proton charge radius derived from the classic 2S-2P
Lamb shift (subsect. 3.3), proton charge radius derived from the ground-state Lamb shift in hydrogen (subsect. 3.5).
We also pay attention to the 2S-2P Lamb shift in He+ (subsect. 3.4).

3.1 1S-2S interval in positronium

Modern theoretical value of this interval is [5]

EPs
1S-2S = 1233 607 222.2(6)MHz, (38)

and the most precise result of experimental measurements is as follows:

1 233 607 216(2)MHz [11]. (39)

One can see that the deviation between the values (38) and (39) is more than three times larger than the uncertainty
in measurement of 1S-2S interval.

Now we introduce the PBFT correction to 1S-2S transition as the sum of eqs. (20c) and (21):

(δWb)
Ps
total(1S − 2S) = δWPs

b (1S − 2S) + (δWb)ann = 7.48MHz.

Hence the 1S-2S interval in positronium corrected in the PBFT becomes

(Eb)
Ps
1S-2S = E1S-2S − (δWb)

Ps
1S-2S = 1233 607 214.7(6)MHz, (40)

which already agrees with the experimental value (39).

3.2 1S spin-spin interval in positronium

In ref. [1] and in subsect. 2.2 of the present paper we have shown that the correction of the PBFT to hyperfine spin-spin
interaction occurs quite negligible for hydrogen and muonium, eq. (29). For positronium we derived eq. (30), which
now will be used for the comparison with experimental data.

The theoretical value of hyperfine splitting of 1S state of positronium is [5]

WPs
s-s = 203 391.7(8)MHz, (41)

which does exceed the corresponding experimental data 203 389(2) [12] and 203 387(2) [13].
Equation (30) allows us to compute the corrected PBFT value of hyperfine spin-spin interval in positronium, using

the numerical value (41):
(Wb)

Ps
s-s = 203 386(1)MHz. (42)

This result is already in good agreement with the experimental data.

3.3 2S1/2-2P1/2 Lamb shift in hydrogen

It is well known that the dominant problem of the exact theoretical evaluation of the classic Lamb shift L2S-2P is the
uncertainty arising from the proton charge radius rp. Due to this reason many authors reverse the problem, and estimate
rp from the obtained data on L2S-2P shift (see, e.g., [5]). It is also known that the estimated value of rp via the measure-
ment of classic Lamb shift systematically exceeds the magnitudes of rp, obtained in the electron-proton scattering data
and other methods for evaluation of rp in physics of elementary particles [14]. This prompted scientists to assume [15]
that the uncertainties in estimation of rp in the experimental particle physics are significantly underestimated. How-
ever, the very recent estimation of proton charge radius via the measurement of 2S-2P Lamb shift in muonic hydrogen
gives the value rp = 0.84184(67) fm [2], which is substantially lower than the CODATA value rp = 0.8768(69) fm [16].
It is also important that for muonic hydrogen the nuclear size effect contributes significantly (about 2%) to the 2S-2P
Lamb shift and thus this new value of rp can pretend to be the most precise result amongst all published.

Below we will show that the PBFT correction (33b) to the 2S-2P Lamb shift removes the exiting remarkable
disagreement between the estimation of rp from the classic Lamb shift data and estimation for muonic hydrogen.

First we determine the factor γm2, which for hydrogen and muonic hydrogen atoms has the value γm2 = (1 −
α2/4)−1/2 = 1.0000066. For muonic hydrogen, where the nuclear size effect contributes significantly to the total 2S-2P
energy interval, the corrected Lamb shift (33b) with the factor γm2 computed right above does not practically affect
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the proton charge radius estimated in ref. [2]. In particular, using the parameterization (1) of ref. [2] for the 2S-2P
energy difference, one can show that the correction (33b) influences the estimated proton size in the order of magnitude
10−4 fm, which is below the measurement uncertainty [2]. In contrast, for the hydrogen atom the correction (33b) and
finite nuclear size effect have comparable values, and the proton charge radius derived with and without correction (33b)
acquires a difference to be substantially larger than the measured/calculated uncertainty.

In order to estimate the proton charge radius from the classic Lamb shift, we use the parameterization

L2S-2P (rp) = A + Br2
p, (43)

which is based on the known fact [3] that the term proportional to rp
2 is additive. Here A and B are the coefficients,

whose numerical values can be found via common calculation of 2S-2P Lamb shift in hydrogen [3] for different values
of proton charge radius [17,18]:

A = 1057695.05 kHz, (44a)

B = 195.750 kHz/fm. (44b)

In the framework of PBFT, eq. (43) is appropriately modified:

(L2S-2P )PBFT = γ2
m2A + γ2

m2B(rPBFT)2p, (45)

where (rPBFT)p is the proton size predicted by the PBFT. Equating (43) and (45), we derive the expression for the
corrected proton size in the framework of the PBFT:

(rPBFT)p =

√

A (1 − γ2
m2)

Bγ2
m2

+
r2
p

γ2
m2

≈
√

r2
p − (Zα)2

A

4B
, (46)

with the sufficient accuracy of calculations. Putting in eq. (46)

rp = 0.876(6) fm (47)

(CODATA value [16]), and using the numerical values (44a-b), we obtain

(rPBFT)p = 0.834(6) fm.

This estimation is much closer to the proton size derived in ref. [2], than the CODATA value (47). At the same
time, we recall that the value (47) incorporates the experimental data in both particle physics and atomic physics, and,
in general, is less than the proton size derived from the classic Lamb shift solely. In particular, the modern data on
2S-2P Lamb shift in hydrogen obtained by various authors within the common approach (see refs. [3,5] and references
therein) define the range of variation of the values of rp between 0.875 fm and 0.891 fm. Thus taking the midpoint
rp = 0.883 fm, we obtain

(rPBFT)p = 0.841(6) fm, (48)

which exactly coincides with the new proton size [2] (i.e. rp = 0.84184(67) fm).

3.4 2S1/2-2P1/2 Lamb shift in He+

Modern computed value of this shift is equal to [3]

LHe
2S-2P = 14 041.46(3)MHz, (49)

which after the correction (33b) becomes

(LHe
b )2S-2P =

(

γHe
m2

)2
LHe

2S-2P = 14 042.21(3)MHz, (50)

(where γHe
m2 = 1.0000266 for He+). The result of measurement of the Lamb shift by an anisotropy quenching method

reported in [19], is
(

LHe
exp

)

2S-2P
= 14 042.52(16)MHz, (51)

which disagrees with both estimations (49) and (50).
The discrepancy between the experimental value (51) and QED prediction (49) stimulated further experimental

research of the 2S-2P Lamb shift in He+. In course of their work the authors of ref. [19] redesigned a photon detector
system to eliminate a residual polarization sensitivity of the photon detectors, which, in the authors’ opinion, distorted
the result of the previous measurement (51). Having implemented this improvement, they reported in [20] a new result

(

LHe
exp

)

2S-2P
= 14 041.13(17)MHz, (52)

which again is in disagreement with the alternative predictions (49) and (50).
Thus, the performance of new high precision experiments on the subject appears to be highly required.
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3.5 1S Lamb shift in hydrogen

Having corrected the classic 2S-2P Lamb shift in the PBFT, we are now in the position to complete the PBFT correc-
tions to the ground state Lamb shift (37). To the accuracy sufficient for further calculations, we assume that the term
δL2S in eq. (37) is completely determined by the corresponding correction to the coefficient A in eq. (44a) for 2S-2P
Lamb shift. Thus, we put δL2S ≈ δA = (γ2

mn−1)A. Hence δL2S = 58.9 kHz. Inserting this value into eq. (37), we obtain

(Lb)1S = L1S + 69.1 kHz. (53)

Our next goal is to estimate the proton charge radius derived from the ground state Lamb shift corrected by
eq. (53) via the comparison of calculated and experimental data on 1S Lamb shift collected in table 12.3 of ref. [3].
One should point out that the major part of the experiments for the measurement of the 1S Lamb shift in hydrogen
has been carried out with the standard radiofrequency method, whose data are rather widely scattered between the
values 8 172 798 kHz and 8 172 874 kHz, with the typical measurement error about 30–50 kHz. In these conditions we
select the result of the mentioned table [3]

L1S = 8172 837(22) kHz, (54)

obtained with Doppler-free two-photon laser spectroscopy [4], which provides more accurate determination of both
2S-2P and 1S Lamb shifts in comparison with the radiofrequency method.

The same work [3] presents the corresponding theoretical values (L1S) for two different values of proton charge
radius:

L1S = 8172 663(6) kHz (rp = 0.805(11) fm) [17], (55a)

and
L1S = 8172 811(14) kHz (for rp = 0.862(12) fm) [18]. (55b)

According to eq. (53), we have to add 69.1 kHz to the values (55a-b). Hence we obtain

(Lb)1S = 8172 732(14) kHz (rp = 0.805(11) fm), (56a)

and
(Lb)1S = 8172 880(14) kHz (for rp = 0.862(12) fm). (56b)

Using the parameterization (43) with the corrected data (56a-b), we find the coefficients (Ab)1S and (Bb)1S as follows:
(Ab)1S = 8171 723.3 kHz, (Bb)1S = 1557.58 kHz/fm. This allows us to determine the proton charge radius, equating
the corrected theoretical value and the experimental value (54) to each other. This coincidence occurs at

rp = 0.846(22) fm. (57)

This estimation, again, well agrees with the value of rp determined through the 2S-2P Lamb shift in the PBFT (48)
and with the proton size determined in ref. [2].

4 Decay rate of bound muon

In this section we return to the one-body problem for simplicity and recall that to solve the Dirac-Coulomb equa-
tion (38) of [1], we applied the replacement

r = r′/bnγn, (58)

(eq. (39) of [1]), which allowed us to present the Hamiltonian Ĥ in the form Ĥ = ĤSchr + V̂ , where ĤSchr is the

non-relativistic Schrödinger Hamiltonian, whereas V̂ is the perturbation.
Now we advance a hypothesis as follows: the transformation (58) represents not only a convenient mathematical

trick, but eventually has a certain physical meaning. First we explain the essence of our hypothesis in the classical
language. Namely, we assume that the transformation (58) describes the change of radial scale for the particle, rotating
in a vicinity of a host charge, as the function of their static binding energy (entering via the factor bn), and orbital
velocity (via the factor γn). This effect looks similar to the metric change in the gravitation field, where the spatial
scale depends on the gravitation potential (in the approximation of weak fields). Thus our hypothesis implies that
the electric field also may change the metrics of space-time, though we assume that this effect is specific for bound
wave-like particles and, in general, is not extended to the classical phenomena.

Further on we involve the undoubted statement that the light velocity in vacuum c, as measured by the distant
observer, is not altered by the EM field. In addition, along the light pulse the space-time interval S = 0. Hence, as viewed
by the distant observer, dS = c2dt2 − dr2 = 0, and the same holds true for the bound particle: dS′ = c′2dt′2 − dr′2.
Since c′ = c, then

dt′ = dr′/c = dt/bγ. (59)
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Equation (59) determines a unit time interval for the particle, and it shows that dt′ is larger than dt, since in the
bound state bγ < 1. This means that the time rate is slowed down for the particle in a bound state, as assessed by the
distant observer.

In the quantum domain, eq. (59) acquires the form

dt′ =
dt

bnγn
=

dt

(1 − (Zα/n)2)
1/2

. (60)

Here dt is interpreted as the time interval for a laboratory (macroscopic) observer.
Equation (60) implies that the time rate for the bound micro-particle is not a constant value, but it varies with

the change of n and Z.
One should emphasize that the assumed effect (60) is independent of the conventional relativistic dilation of time

for moving particles, and thus it can be subjected to experimental test separately. As an example, below we consider
the decay rate for the bound muon in the atoms with n = 1 (1S-state) and various Z, and compare the results of
calculations with the available experimental data.

It is known that a dominant channel of a decay of free muon is

µ− → e− + ν̆e + νµ, (61)

with the rate τ0 = 2.2 · 10−6 s in its proper reference frame.
Negative muons being captured by atoms, must necessarily be in a bound 1S-state. Such a muon disappears by

two competing processes: nuclear capture and decay (61). The cross-section of nuclear capture rapidly increases with
Z; however, using the “start-stop” technique with registration of electrons in the reaction (61), one can measure the
rate of this reaction separately.

To the moment, there were known three effects which make the rate of (61) different for bound muon than for free
muon: phase space effect, relativistic dilation of time and the electron Coulomb effect [21]. For light atoms, the first and
third effects almost eliminate each other, and the relativistic dilation of time prevails. For heavy atoms the situation
becomes more complicated. The author of the mentioned paper [21] has made numerical calculations of bound muon
decay rate τb versus Z and plotted the corresponding curve to be shown in fig. 1 (upper curve). In the same figure we
show the experimental results [22], which drastically deviate from the theoretical curve especially at large Z.

In order to explain this deviation, Huff paid attention to the substantial difference between the electron spectra
for bound muon decay and that for free muon decay [21]. Hence the decay rate ratio τb/τ0, before comparing with the
experimental results, must be corrected for two effects: 1) the energy threshold for detection of the decay electrons;
2) the energy loss by the decay electrons in the target. By this way Huff has corrected the computed value of τb/τ0

for iron (Z = 26), antimony (Z = 51), tantalum (Z = 73) and lead (Z = 82), which are depicted in fig. 1 by hollow
circles. Nonetheless, the deviation between experimental data and corrected theoretical values remains appreciable.

Now we assume that the remaining deviation of theoretical and experimental data reflects the effect of additional
dilation of time for the bound muon according to eq. (60). Since this effect has a general character and depends on the
binding energy of muon, it cannot be mixed with other effects influencing the decay rate of bound muon mentioned
above. Therefore, in order to take into account the time transformation (60) for the bound muon, we have to multiply
Huff’s data by factor (1− (Zα)2/n2)1/2. The results of our corrections are shown in fig. 1 as triangles. One can observe
a very satisfactory agreement of our results with the experimental data of [22].

It would be fair to add that the second author has developed and applied long ago, his ideas (which, in effect,
initiated the present work), to predict the bound muon decay rate retardation. He postulated that the rest mass of
any object bound to a given field, owing to the law of relativistic energy conservation, must be decreased as much as
the mass equivalent of the static binding energy coming into play (and this already at rest, when macroscopic objects
are considered) [23–26]. In this way he also arrived to the variation of time rate for the bound particle as a function
of the binding energy and obtained for bound muon a theoretical curve similar to the one presented by us in fig. 1.

5 Conclusion

In this paper we verify the Pure Bound Field Theory (PBFT) based on re-postulated Dirac and Breit equations, at the
scale of hyperfine contributions to the atomic energy levels. In this way we consistently considered the fine-structure
corrections, corrections to hyperfine spin-spin interaction for the leptonic atoms, as well as the corrections to the Lamb
shift.

The corrections of the PBFT to common results of atomic physics stem from the replacements (5a-e), which reflect
the modification of the structure of bound EM field for the system of bound charged with the forbidden radiation
within the total momentum conservation constraint, when the wave equation (12) of ref. [1] for the operator of vector
potential is replaced by the Poisson-like equation (14) of [1].
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Fig. 1. Comparison of the results of the theoretical calculation of the bound muon decay rate versus Z with the experimental
data of [22]. The peak near Z = 26 observed in [22] was not confirmed in later experiment [27].

We have demonstrated that the fine-structure corrections have the order of magnitude mc2(Zα)6m/M and scales
as n−5 and n−6. Hence they are practically significant only for 1S-state of hydrogenlike atoms, in particular, in the re-
estimation of the ground-state Lamb shift in the hydrogen atom. For the 1S-2S interval in positronium, there appears
an additional component of correction due to the appropriate modification of the annihilation term in the PBFT, and
both corrections completely eliminate the available discrepancy between the theoretical value and experimental data
for the 1S-2S interval.

The corrections brought by the PBFT to the spin-spin interval occur negligible for the hydrogenlike atoms with
m ≪ M (for hydrogen and heavier atoms, it is due to the negligible value of the correcting factor (Zα)2 2mM

(M+m)2 Ws-s
in comparison with the calculation uncertainty [1]; for muonium, eq. (29), it is due to cancellation by the same PBFT
correction in the magnetic-moment–to–mass ratio value derived from Zeeman effect). At the same time, such PBFT
correction acquires significant value for the spin-spin interval of 1S-state of positronium (eq. (30)), where the correction
of the PBFT removes the discrepancy between theoretical and experimental results.

The PBFT correction to the Lamb shift emerges due to the replacements (5a-e) in corresponding QED equations.
Such a correction is directly applicable to the classic 2S-2P Lamb shift (eqs. (33)), where, for the hydrogen atom, we
get an exact coincidence of—corrected by us—theoretical value of proton charge radius rp = 0.841(6) fm (eq. (48))
with the latest result of measurement via the 2S-2P Lamb shift in muonic hydrogen rp = 0.84184(67) fm [2]. The
obtained correction to the 2S-2P Lamb shift contributes to the corresponding correction to the 1S Lamb shift via
eq. (37), along with the correction of the PBFT to the 1S-2S interval (20b). Introducing the PBFT corrections to
the 1S Lamb shift in hydrogen, we obtained the proton charge radius rp = 0.846(22) fm (eq. (57)), which practically
coincides with the result yielded by the classic 2S-2P Lamb shift.

In table 1 we summarize the results of QED without and with the corrections we introduced, in comparison with
the corresponding experimental data. These data completely support our principal idea to modify the Dirac equation
for non-radiative EM field of bound electron, which, in its turn, leads to further modifications of the equations of
atomic physics. These modifications induce corrections to the effects to be non-directly related to each other, but
characterized by the same final result: practical elimination of deviations between theory and experiment.
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Table 1. Correction of QED results within the PBFT in comparison with the corresponding experimental (recommended) values
for those parameters, where a high measuring precision has been achieved. The last two columns are for the deviation/uncertainty
ratios before and after correction, respectively.

Parameter QED result Result corrected by us Experimental value(s) Ratio Ratio
before after

correction correction

1S-2S interval in 1 233 607 222.2(6) 1 233 607 214.7(6) 1 233 607 216(1) [11] 3.0 1
positronium, MHz (subsect. 3.1, eq. (40))

Spin-spin splitting 203 391.7(8) 203 386(1) 203 389(2) [12] 1.5 −1.5
in positronium, MHz (subsect. 3.2, eq. (42)) 203 387(2) [13] 2.5 < 1

Spin-spin splitting 4 463 302.88(55) remains non-corrected 4 463 302.78(5) [5] < 1 < 1
in muonium, MHz (subsect. 2.2, eq. (29))

Proton charge radius (2S-2P 0.876(6) fm 0.841(6) fm 0.84184(67) fm [2] 5.7 < 1
Lamb shift in hydrogen) (subsect. 3.3, eq. (48))

Proton charge radius (1S 0.876(6) fm 0.846(22) fm 0.84184(67) fm [2] 5.7 < 1
Lamb shift in hydrogen) (subsect. 3.5, eq. (57))

We emphasize that the fine-structure correction of the PBFT in positronium and corrections to spin-spin interaction
result from the appropriate modification of Breit equation in the PBFT. In the analysis of radiative corrections to the
atomic energy levels, we consider the PBFT as complementary to QED, and the modifications of QED core structure
are not implied, except for the replacements (5a-e) in the input of QED expressions.

Further, we have predicted a novel phenomenon for the bound micro-particles: a variation of their time rate as the
function of their binding energy, which occurs independently of the standard relativistic dilation of time for moving
objects. Perhaps, the assumed variation of time rate with a binding energy explains the result of our recent experiment
on the Mössbauer effect in a rotating system [27], which also shows a frequency/energy shift additional to relativistic
time dilation.

Involving this effect in the analysis of the bound muon decay rate τb in muonic atoms, we have reached a quantitative
agreement between theoretical and experimental data describing the dependence of τb on the atomic number Z. At
the same time, one should mention that the experimental data on τb(Z) obtained in [22] and [28] contradict each
other in some points, and new precise experiments for direct measurement of the τb(Z)-dependence would be of high
importance.

Further on we emphasize the universal character of the PBFT, which is also applied to the analysis of heavy atoms,
where we also achieve promising results. Such an analysis will be done in a separate contribution.

Finally, we believe that the present contribution will stimulate further detailed experimental research in atomic
physics.
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